

 Navigation

 	
 index

 	
 next |

 	django-polymorphic 0.9.2 documentation

Welcome to django-polymorphic’s documentation!

Django-polymorphic simplifies using inherited models in Django projects.
When a query is made at the base model, the inherited model classes are returned.

When we store models that inherit from a Project model...

>>> Project.objects.create(topic="Department Party")
>>> ArtProject.objects.create(topic="Painting with Tim", artist="T. Turner")
>>> ResearchProject.objects.create(topic="Swallow Aerodynamics", supervisor="Dr. Winter")

...and want to retrieve all our projects, the subclassed models are returned!

>>> Project.objects.all()
 [<Project: id 1, topic "Department Party">,
 <ArtProject: id 2, topic "Painting with Tim", artist "T. Turner">,
 <ResearchProject: id 3, topic "Swallow Aerodynamics", supervisor "Dr. Winter">]

Using vanilla Django, we get the base class objects, which is rarely what we wanted:

>>> Project.objects.all()
 [<Project: id 1, topic "Department Party">,
 <Project: id 2, topic "Painting with Tim">,
 <Project: id 3, topic "Swallow Aerodynamics">]

Features

	Full admin integration.

	ORM integration:

	Support for ForeignKey, ManyToManyField, OneToOneField descriptors.

	Support for proxy models.

	Filtering/ordering of inherited models (ArtProject___artist).

	Filtering model types: instance_of(...) and not_instance_of(...)

	Combining querysets of different models (qs3 = qs1 | qs2)

	Support for custom user-defined managers.

	Uses the minimum amount of queries needed to fetch the inherited models.

	Disabling polymorphic behavior when needed.

Getting started

	Quickstart
	Making Your Models Polymorphic

	Using Polymorphic Models

	Django admin integration
	The parent model

	The child models

	Polymorphic Inlines

	Example

	Performance Considerations
	ContentType retrieval

	Database notes

Advanced topics

	Migrating existing models to polymorphic
	Filling the content type value

	Advanced features
	Filtering for classes (equivalent to python’s isinstance()):

	Polymorphic filtering (for fields in inherited classes)

	Combining Querysets

	ManyToManyField, ForeignKey, OneToOneField

	Using Third Party Models (without modifying them)

	Non-Polymorphic Queries

	About Queryset Methods

	Using enhanced Q-objects in any Places

	Nicely Displaying Polymorphic Querysets

	Restrictions & Caveats

	Custom Managers, Querysets & Manager Inheritance
	Using a Custom Manager

	Manager Inheritance

	Using a Custom Queryset Class

	Third-party applications support
	django-reversion support

	django-reversion-compare support

	django-mptt support

	Changelog
	Version 0.9.2 (2016-05-04)

	Version 0.9.1 (2016-02-18)

	Version 0.9 (2016-02-17)

	Version 0.8.1 (2015-12-29)

	Version 0.8 (2015-12-28)

	Version 0.7.2 (2015-10-01)

	Version 0.7.1 (2015-04-30)

	Version 0.7 (2015-04-08)

	Version 0.6.1 (2014-12-30)

	Version 0.6 (2014-10-14)

	Version 0.5.6 (2014-07-21)

	Version 0.5.5 (2014-04-29)

	Version 0.5.4 (2014-04-09)

	Version 0.5.3 (2013-09-17)

	Version 0.5.2 (2013-09-05)

	Version 0.5.1 (2013-07-05)

	Version 0.5 (2013-04-20)

	Version 0.4.2 (2013-04-10)

	Version 0.4.1 (2013-04-10)

	Version 0.4 (2013-03-25)

	Version 0.3.1 (2013-02-28)

	Version 0.3 (2013-02-28)

	Version 0.2 (2011-04-27)

	Contributing
	Running tests

	Example project

	Supported Django versions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-polymorphic 0.9.2 documentation

Quickstart

Install the project using:

pip install django-polymorphic

Update the settings file:

INSTALLED_APPS += (
 'polymorphic',
 'django.contrib.contenttypes',
)

The current release of django-polymorphic supports Django 1.4 till 1.9 and Python 3 is supported.

Making Your Models Polymorphic

Use PolymorphicModel instead of Django’s models.Model, like so:

from polymorphic.models import PolymorphicModel

class Project(PolymorphicModel):
 topic = models.CharField(max_length=30)

class ArtProject(Project):
 artist = models.CharField(max_length=30)

class ResearchProject(Project):
 supervisor = models.CharField(max_length=30)

All models inheriting from your polymorphic models will be polymorphic as well.

Using Polymorphic Models

Create some objects:

>>> Project.objects.create(topic="Department Party")
>>> ArtProject.objects.create(topic="Painting with Tim", artist="T. Turner")
>>> ResearchProject.objects.create(topic="Swallow Aerodynamics", supervisor="Dr. Winter")

Get polymorphic query results:

>>> Project.objects.all()
[<Project: id 1, topic "Department Party">,
 <ArtProject: id 2, topic "Painting with Tim", artist "T. Turner">,
 <ResearchProject: id 3, topic "Swallow Aerodynamics", supervisor "Dr. Winter">]

Use instance_of or not_instance_of for narrowing the result to specific subtypes:

>>> Project.objects.instance_of(ArtProject)
[<ArtProject: id 2, topic "Painting with Tim", artist "T. Turner">]

>>> Project.objects.instance_of(ArtProject) | Project.objects.instance_of(ResearchProject)
[<ArtProject: id 2, topic "Painting with Tim", artist "T. Turner">,
 <ResearchProject: id 3, topic "Swallow Aerodynamics", supervisor "Dr. Winter">]

Polymorphic filtering: Get all projects where Mr. Turner is involved as an artist
or supervisor (note the three underscores):

>>> Project.objects.filter(Q(ArtProject___artist='T. Turner') | Q(ResearchProject___supervisor='T. Turner'))
[<ArtProject: id 2, topic "Painting with Tim", artist "T. Turner">,
 <ResearchProject: id 4, topic "Color Use in Late Cubism", supervisor "T. Turner">]

This is basically all you need to know, as django-polymorphic mostly
works fully automatic and just delivers the expected results.

Note: When using the dumpdata management command on polymorphic tables
(or any table that has a reference to ContentType [https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType]),
include the --natural flag in the arguments. This makes sure the
ContentType [https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType] models will be referenced by name
instead of their primary key as that changes between Django instances.

Note

While django-polymorphic makes subclassed models easy to use in Django,
we still encourage to use them with caution. Each subclassed model will require
Django to perform an INNER JOIN to fetch the model fields from the database.
While taking this in mind, there are valid reasons for using subclassed models.
That’s what this library is designed for!

 Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-polymorphic 0.9.2 documentation

Django admin integration

Off course, it’s possible to register individual polymorphic models in the Django admin interface.
However, to use these models in a single cohesive interface, some extra base classes are available.

The polymorphic admin interface works in a simple way:

	The add screen gains an additional step where the desired child model is selected.

	The edit screen displays the admin interface of the child model.

	The list screen still displays all objects of the base class.

The polymorphic admin is implemented via a parent admin that forwards the edit and delete views
to the ModelAdmin of the derived child model. The list page is still implemented by the parent model admin.

Both the parent model and child model need to have a ModelAdmin class.
Only the ModelAdmin class of the parent/base model has to be registered in the Django admin site.

The parent model

The parent model needs to inherit PolymorphicParentModelAdmin, and implement the following:

	base_model should be set

	child_models or get_child_models() should return a list with (Model, ModelAdmin) tuple.

The exact implementation can depend on the way your module is structured.
For simple inheritance situations, child_models is the best solution.
For large applications, get_child_models() can be used to query a plugin registration system.

By default, the non_polymorphic() method will be called on the queryset, so
only the Parent model will be provided to the list template. This is to avoid
the performance hit of retrieving child models.

This can be controlled by setting the polymorphic_list property on the
parent admin. Setting it to True will provide child models to the list template.

Note: If you are using non-integer primary keys in your model, you have to edit pk_regex,
for example pk_regex = '([\w-]+)' if you use UUIDs. Otherwise you cannot change model entries.

The child models

The admin interface of the derived models should inherit from PolymorphicChildModelAdmin.
Again, base_model should be set in this class as well.
This class implements the following features:

	It corrects the breadcrumbs in the admin pages.

	It extends the template lookup paths, to look for both the parent model and child model in the admin/app/model/change_form.html path.

	It allows to set base_form so the derived class will automatically include other fields in the form.

	It allows to set base_fieldsets so the derived class will automatically display any extra fields.

The standard ModelAdmin attributes form and fieldsets should rather be avoided at the base class,
because it will hide any additional fields which are defined in the derived model. Instead,
use the base_form and base_fieldsets instead. The PolymorphicChildModelAdmin will
automatically detect the additional fields that the child model has, display those in a separate fieldset.

Polymorphic Inlines

To add a polymorphic child model as an Inline for another model, add a field to the inline’s readonly_fields list formed by the lowercased name of the polymorphic parent model with the string “_ptr” appended to it. Otherwise, trying to save that model in the admin will raise an AttributeError with the message “can’t set attribute”.

Example

The models are taken from Advanced features.

from django.contrib import admin
from polymorphic.admin import PolymorphicParentModelAdmin, PolymorphicChildModelAdmin
from .models import ModelA, ModelB, ModelC, StandardModel

class ModelAChildAdmin(PolymorphicChildModelAdmin):
 """ Base admin class for all child models """
 base_model = ModelA

 # By using these `base_...` attributes instead of the regular ModelAdmin `form` and `fieldsets`,
 # the additional fields of the child models are automatically added to the admin form.
 base_form = ...
 base_fieldsets = (
 ...
)

class ModelBAdmin(ModelAChildAdmin):
 base_model = ModelB
 # define custom features here

class ModelCAdmin(ModelBAdmin):
 base_model = ModelC
 # define custom features here

class ModelAParentAdmin(PolymorphicParentModelAdmin):
 """ The parent model admin """
 base_model = ModelA
 child_models = (
 (ModelB, ModelBAdmin),
 (ModelC, ModelCAdmin),
)

class ModelBInline(admin.StackedInline):
 model = ModelB
 fk_name = 'modelb'
 readonly_fields = ['modela_ptr']

class StandardModelAdmin(admin.ModelAdmin):
 inlines = [ModelBInline]

Only the parent needs to be registered:
admin.site.register(ModelA, ModelAParentAdmin)
admin.site.register(StandardModel, StandardModelAdmin)

 Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-polymorphic 0.9.2 documentation

Performance Considerations

Usually, when Django users create their own polymorphic ad-hoc solution
without a tool like django-polymorphic, this usually results in a variation of

result_objects = [o.get_real_instance() for o in BaseModel.objects.filter(...)]

which has very bad performance, as it introduces one additional
SQL query for every object in the result which is not of class BaseModel.
Compared to these solutions, django-polymorphic has the advantage
that it only needs 1 SQL query per object type, and not per object.

The current implementation does not use any custom SQL or Django DB layer
internals - it is purely based on the standard Django ORM. Specifically, the query:

result_objects = list(ModelA.objects.filter(...))

performs one SQL query to retrieve ModelA objects and one additional
query for each unique derived class occurring in result_objects.
The best case for retrieving 100 objects is 1 SQL query if all are
class ModelA. If 50 objects are ModelA and 50 are ModelB, then
two queries are executed. The pathological worst case is 101 db queries if
result_objects contains 100 different object types (with all of them
subclasses of ModelA).

ContentType retrieval

When fetching the ContentType [https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType] class,
it’s tempting to read the object.polymorphic_ctype field directly.
However, this performs an additional query via the ForeignKey [https://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] object
to fetch the ContentType [https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType].
Instead, use:

from django.contrib.contenttypes.models import ContentType

ctype = ContentType.objects.get_for_id(object.polymorphic_ctype_id)

This uses the get_for_id() [https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentTypeManager.get_for_id] function
which caches the results internally.

Database notes

Current relational DBM systems seem to have general problems with
the SQL queries produced by object relational mappers like the Django
ORM, if these use multi-table inheritance like Django’s ORM does.
The “inner joins” in these queries can perform very badly.
This is independent of django_polymorphic and affects all uses of
multi table Model inheritance.

Please also see this post (and comments) from Jacob Kaplan-Moss [http://www.jacobian.org/writing/concrete-inheritance/].

 Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-polymorphic 0.9.2 documentation

Migrating existing models to polymorphic

Existing models can be migrated to become polymorphic models.
During the migrating, the polymorphic_ctype field needs to be filled in.

This can be done in the following steps:

	Inherit your model from PolymorphicModel.

	Create a Django migration file to create the polymorphic_ctype_id database column.

	Make sure the proper ContentType [https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType] value is filled in.

Filling the content type value

The following Python code can be used to fill the value of a model:

from django.contrib.contenttypes.models import ContentType
from myapp.models import MyModel

new_ct = ContentType.objects.get_for_model(MyModel)
MyModel.objects.filter(polymorphic_ctype__isnull=True).update(polymorphic_ctype=new_ct)

The creation and update of the polymorphic_ctype_id column
can be included in a single Django migration. For example:

-*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import migrations, models

def forwards_func(apps, schema_editor):
 MyModel = apps.get_model('myapp', 'MyModel')
 ContentType = apps.get_model('contenttypes', 'ContentType')

 new_ct = ContentType.objects.get_for_model(MyModel)
 MyModel.objects.filter(polymorphic_ctype__isnull=True).update(polymorphic_ctype=new_ct)

def backwards_func(apps, schema_editor):
 pass

class Migration(migrations.Migration):

 dependencies = [
 ('contenttypes', '0001_initial'),
 ('myapp', '0001_initial'),
]

 operations = [
 migrations.AddField(
 model_name='mymodel',
 name='polymorphic_ctype',
 field=models.ForeignKey(related_name='polymorphic_myapp.mymodel_set+', editable=False, to='contenttypes.ContentType', null=True),
),
 migrations.RunPython(forwards_func, backwards_func),
]

It’s recommended to let makemigrations create the migration file,
and include the RunPython manually before running the migration.

 Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-polymorphic 0.9.2 documentation

Advanced features

In the examples below, these models are being used:

from django.db import models
from polymorphic.models import PolymorphicModel

class ModelA(PolymorphicModel):
 field1 = models.CharField(max_length=10)

class ModelB(ModelA):
 field2 = models.CharField(max_length=10)

class ModelC(ModelB):
 field3 = models.CharField(max_length=10)

Filtering for classes (equivalent to python’s isinstance()):

>>> ModelA.objects.instance_of(ModelB)
.
[<ModelB: id 2, field1 (CharField), field2 (CharField)>,
 <ModelC: id 3, field1 (CharField), field2 (CharField), field3 (CharField)>]

In general, including or excluding parts of the inheritance tree:

ModelA.objects.instance_of(ModelB [, ModelC ...])
ModelA.objects.not_instance_of(ModelB [, ModelC ...])

You can also use this feature in Q-objects (with the same result as above):

>>> ModelA.objects.filter(Q(instance_of=ModelB))

Polymorphic filtering (for fields in inherited classes)

For example, cherrypicking objects from multiple derived classes
anywhere in the inheritance tree, using Q objects (with the
syntax: exact model name + three _ + field name):

>>> ModelA.objects.filter(Q(ModelB___field2 = 'B2') | Q(ModelC___field3 = 'C3'))
.
[<ModelB: id 2, field1 (CharField), field2 (CharField)>,
 <ModelC: id 3, field1 (CharField), field2 (CharField), field3 (CharField)>]

Combining Querysets

Querysets could now be regarded as object containers that allow the
aggregation of different object types, very similar to python
lists - as long as the objects are accessed through the manager of
a common base class:

>>> Base.objects.instance_of(ModelX) | Base.objects.instance_of(ModelY)
.
[<ModelX: id 1, field_x (CharField)>,
 <ModelY: id 2, field_y (CharField)>]

ManyToManyField, ForeignKey, OneToOneField

Relationship fields referring to polymorphic models work as
expected: like polymorphic querysets they now always return the
referred objects with the same type/class these were created and
saved as.

E.g., if in your model you define:

field1 = OneToOneField(ModelA)

then field1 may now also refer to objects of type ModelB or ModelC.

A ManyToManyField example:

The model holding the relation may be any kind of model, polymorphic or not
class RelatingModel(models.Model):
 many2many = models.ManyToManyField('ModelA') # ManyToMany relation to a polymorphic model

>>> o=RelatingModel.objects.create()
>>> o.many2many.add(ModelA.objects.get(id=1))
>>> o.many2many.add(ModelB.objects.get(id=2))
>>> o.many2many.add(ModelC.objects.get(id=3))

>>> o.many2many.all()
[<ModelA: id 1, field1 (CharField)>,
 <ModelB: id 2, field1 (CharField), field2 (CharField)>,
 <ModelC: id 3, field1 (CharField), field2 (CharField), field3 (CharField)>]

Using Third Party Models (without modifying them)

Third party models can be used as polymorphic models without
restrictions by subclassing them. E.g. using a third party
model as the root of a polymorphic inheritance tree:

from thirdparty import ThirdPartyModel

class MyThirdPartyBaseModel(PolymorphicModel, ThirdPartyModel):
 pass # or add fields

Or instead integrating the third party model anywhere into an
existing polymorphic inheritance tree:

class MyBaseModel(SomePolymorphicModel):
 my_field = models.CharField(max_length=10)

class MyModelWithThirdParty(MyBaseModel, ThirdPartyModel):
 pass # or add fields

Non-Polymorphic Queries

If you insert .non_polymorphic() anywhere into the query chain, then
django_polymorphic will simply leave out the final step of retrieving the
real objects, and the manager/queryset will return objects of the type of
the base class you used for the query, like vanilla Django would
(ModelA in this example).

>>> qs=ModelA.objects.non_polymorphic().all()
>>> qs
[<ModelA: id 1, field1 (CharField)>,
 <ModelA: id 2, field1 (CharField)>,
 <ModelA: id 3, field1 (CharField)>]

There are no other changes in the behaviour of the queryset. For example,
enhancements for filter() or instance_of() etc. still work as expected.
If you do the final step yourself, you get the usual polymorphic result:

>>> ModelA.objects.get_real_instances(qs)
[<ModelA: id 1, field1 (CharField)>,
 <ModelB: id 2, field1 (CharField), field2 (CharField)>,
 <ModelC: id 3, field1 (CharField), field2 (CharField), field3 (CharField)>]

About Queryset Methods

	annotate() and aggregate() work just as usual, with the
addition that the ModelX___field syntax can be used for the
keyword arguments (but not for the non-keyword arguments).

	order_by() similarly supports the ModelX___field syntax
for specifying ordering through a field in a submodel.

	distinct() works as expected. It only regards the fields of
the base class, but this should never make a difference.

	select_related() works just as usual, but it can not (yet) be used
to select relations in inherited models
(like ModelA.objects.select_related('ModelC___fieldxy'))

	extra() works as expected (it returns polymorphic results) but
currently has one restriction: The resulting objects are required to have
a unique primary key within the result set - otherwise an error is thrown
(this case could be made to work, however it may be mostly unneeded)..
The keyword-argument “polymorphic” is no longer supported.
You can get back the old non-polymorphic behaviour
by using ModelA.objects.non_polymorphic().extra(...).

	get_real_instances() allows you to turn a
queryset or list of base model objects efficiently into the real objects.
For example, you could do base_objects_queryset=ModelA.extra(...).non_polymorphic()
and then call real_objects=base_objects_queryset.get_real_instances(). Or alternatively
.``real_objects=ModelA.objects.get_real_instances(base_objects_queryset_or_object_list)``

	values() & values_list() currently do not return polymorphic
results. This may change in the future however. If you want to use these
methods now, it’s best if you use Model.base_objects.values... as
this is guaranteed to not change.

	defer() and only() work as expected. On Django 1.5+ they support
the ModelX___field syntax, but on Django 1.4 it is only possible to
pass fields on the base model into these methods.

Using enhanced Q-objects in any Places

The queryset enhancements (e.g. instance_of) only work as arguments
to the member functions of a polymorphic queryset. Occasionally it may
be useful to be able to use Q objects with these enhancements in other places.
As Django doesn’t understand these enhanced Q objects, you need to
transform them manually into normal Q objects before you can feed them
to a Django queryset or function:

normal_q_object = ModelA.translate_polymorphic_Q_object(Q(instance_of=Model2B))

This function cannot be used at model creation time however (in models.py),
as it may need to access the ContentTypes database table.

Nicely Displaying Polymorphic Querysets

In order to get the output as seen in all examples here, you need to use the
ShowFieldType class mixin:

from polymorphic.showfields import PolymorphicModel, ShowFieldType

class ModelA(ShowFieldType, PolymorphicModel):
 field1 = models.CharField(max_length=10)

You may also use ShowFieldContent
or ShowFieldTypeAndContent to display
additional information when printing querysets (or converting them to text).

When showing field contents, they will be truncated to 20 characters. You can
modify this behaviour by setting a class variable in your model like this:

class ModelA(ShowFieldType, PolymorphicModel):
 polymorphic_showfield_max_field_width = 20
 ...

Similarly, pre-V1.0 output formatting can be re-estated by using
polymorphic_showfield_old_format = True.

Restrictions & Caveats

	Database Performance regarding concrete Model inheritance in general.
Please see the Performance Considerations.

	Queryset methods values(), values_list(), and select_related()
are not yet fully supported (see above). extra() has one restriction:
the resulting objects are required to have a unique primary key within
the result set.

	Diamond shaped inheritance: There seems to be a general problem
with diamond shaped multiple model inheritance with Django models
(tested with V1.1 - V1.3).
An example is here: http://code.djangoproject.com/ticket/10808.
This problem is aggravated when trying to enhance models.Model
by subclassing it instead of modifying Django core (as we do here
with PolymorphicModel).

	The enhanced filter-definitions/Q-objects only work as arguments
for the methods of the polymorphic querysets. Please see above
for translate_polymorphic_Q_object.

	When using the dumpdata management command on polymorphic tables
(or any table that has a reference to
ContentType [https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType]),
include the --natural flag in the arguments.

 Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-polymorphic 0.9.2 documentation

Custom Managers, Querysets & Manager Inheritance

Using a Custom Manager

A nice feature of Django is the possibility to define one’s own custom object managers.
This is fully supported with django_polymorphic: For creating a custom polymorphic
manager class, just derive your manager from PolymorphicManager instead of
models.Manager. As with vanilla Django, in your model class, you should
explicitly add the default manager first, and then your custom manager:

from polymorphic.models import PolymorphicModel
from polymorphic.manager import PolymorphicManager

class TimeOrderedManager(PolymorphicManager):
 def get_queryset(self):
 qs = super(TimeOrderedManager,self).get_queryset()
 return qs.order_by('-start_date') # order the queryset

 def most_recent(self):
 qs = self.get_queryset() # get my ordered queryset
 return qs[:10] # limit => get ten most recent entries

class Project(PolymorphicModel):
 objects = PolymorphicManager() # add the default polymorphic manager first
 objects_ordered = TimeOrderedManager() # then add your own manager
 start_date = DateTimeField() # project start is this date/time

The first manager defined (‘objects’ in the example) is used by
Django as automatic manager for several purposes, including accessing
related objects. It must not filter objects and it’s safest to use
the plain PolymorphicManager here.

Note that get_query_set is deprecated in Django 1.8 and creates warnings in Django 1.7.

Manager Inheritance

Polymorphic models inherit/propagate all managers from their
base models, as long as these are polymorphic. This means that all
managers defined in polymorphic base models continue to work as
expected in models inheriting from this base model:

from polymorphic.models import PolymorphicModel
from polymorphic.manager import PolymorphicManager

class TimeOrderedManager(PolymorphicManager):
 def get_queryset(self):
 qs = super(TimeOrderedManager,self).get_queryset()
 return qs.order_by('-start_date') # order the queryset

 def most_recent(self):
 qs = self.get_queryset() # get my ordered queryset
 return qs[:10] # limit => get ten most recent entries

class Project(PolymorphicModel):
 objects = PolymorphicManager() # add the default polymorphic manager first
 objects_ordered = TimeOrderedManager() # then add your own manager
 start_date = DateTimeField() # project start is this date/time

class ArtProject(Project): # inherit from Project, inheriting its fields and managers
 artist = models.CharField(max_length=30)

ArtProject inherited the managers objects and objects_ordered from Project.

ArtProject.objects_ordered.all() will return all art projects ordered
regarding their start time and ArtProject.objects_ordered.most_recent()
will return the ten most recent art projects.
.

Note that get_query_set is deprecated in Django 1.8 and creates warnings in Django 1.7.

Using a Custom Queryset Class

The PolymorphicManager class accepts one initialization argument,
which is the queryset class the manager should use. Just as with vanilla Django,
you may define your own custom queryset classes. Just use PolymorphicQuerySet
instead of Django’s QuerySet as the base class:

from polymorphic.models import PolymorphicModel
from polymorphic.manager import PolymorphicManager
from polymorphic.query import PolymorphicQuerySet

class MyQuerySet(PolymorphicQuerySet):
 def my_queryset_method(...):
 ...

class MyModel(PolymorphicModel):
 my_objects=PolymorphicManager(MyQuerySet)
 ...

 Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-polymorphic 0.9.2 documentation

Third-party applications support

django-reversion support

Support for django-reversion [https://github.com/etianen/django-reversion] works as expected with polymorphic models.
However, they require more setup than standard models. That’s become:

	The children models are not registered in the admin site.
You will therefore need to manually register them to django-reversion [https://github.com/etianen/django-reversion].

	Polymorphic models use multi-table inheritance [https://docs.djangoproject.com/en/dev/topics/db/models/#multi-table-inheritance].
See the reversion documentation [http://django-reversion.readthedocs.org/en/latest/api.html#multi-table-inheritance]
how to deal with this by adding a follow field for the primary key.

	Both admin classes redefine object_history_template.

Example

The admin Example becomes:

from django.contrib import admin
from polymorphic.admin import PolymorphicParentModelAdmin, PolymorphicChildModelAdmin
from reversion.admin import VersionAdmin
from reversion import revisions
from .models import ModelA, ModelB, ModelC

class ModelAChildAdmin(PolymorphicChildModelAdmin, VersionAdmin):
 base_model = ModelA
 base_form = ...
 base_fieldsets = (
 ...
)

class ModelBAdmin(ModelAChildAdmin, VersionAdmin):
 # define custom features here

class ModelCAdmin(ModelBAdmin):
 # define custom features here

class ModelAParentAdmin(VersionAdmin, PolymorphicParentModelAdmin):
 base_model = ModelA
 child_models = (
 (ModelB, ModelBAdmin),
 (ModelC, ModelCAdmin),
)

revisions.register(ModelB, follow=['modela_ptr'])
revisions.register(ModelC, follow=['modelb_ptr'])
admin.site.register(ModelA, ModelAParentAdmin)

Redefine a admin/polymorphic/object_history.html template, so it combines both worlds:

{% extends 'reversion/object_history.html' %}
{% load polymorphic_admin_tags %}

{% block breadcrumbs %}
 {% breadcrumb_scope base_opts %}{{ block.super }}{% endbreadcrumb_scope %}
{% endblock %}

This makes sure both the reversion template is used, and the breadcrumb is corrected for the polymorphic model.

django-reversion-compare support

The django-reversion-compare [https://github.com/jedie/django-reversion-compare] views work as expected, the admin requires a little tweak.
In your parent admin, include the following method:

def compare_view(self, request, object_id, extra_context=None):
 """Redirect the reversion-compare view to the child admin."""
 real_admin = self._get_real_admin(object_id)
 return real_admin.compare_view(request, object_id, extra_context=extra_context)

As the compare view resolves the the parent admin, it uses it’s base model to find revisions.
This doesn’t work, since it needs to look for revisions of the child model. Using this tweak,
the view of the actual child model is used, similar to the way the regular change and delete views are redirected.

django-mptt support

Combining polymorphic with django-mptt [https://github.com/django-mptt/django-mptt] is certainly possible, but not straightforward.
It involves combining both managers, querysets, models, meta-classes and admin classes
using multiple inheritance.

The django-polymorphic-tree [https://github.com/edoburu/django-polymorphic-tree] package provides this out of the box.

 Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-polymorphic 0.9.2 documentation

Changelog

Version 0.9.2 (2016-05-04)

	Fix error when using date_hierarchy field in the admin

	Fixed Django 1.10 warning in admin add-type view.

Version 0.9.1 (2016-02-18)

	Fixed support for PolymorphicManager.from_queryset() for custom query sets.

	Fixed Django 1.7 changeform_view() redirection to the child admin site.
This fixes custom admin code that uses these views, such as django-reversion [https://github.com/etianen/django-reversion]‘s revision_view() / recover_view().

	Fixed .only('pk') field support.

	Fixed object_history_template breadcrumb.
NOTE: when using django-reversion [https://github.com/etianen/django-reversion] / django-reversion-compare [https://github.com/jedie/django-reversion-compare], make sure to implement
a admin/polymorphic/object_history.html template in your project that extends
from reversion/object_history.html or reversion-compare/object_history.html respectively.

Version 0.9 (2016-02-17)

	Added .only() and .defer() support.

	Added support for Django 1.8 complex expressions in .annotate() / .aggregate().

	Fix Django 1.9 handling of custom URLs.
The new change-URL redirect overlapped any custom URLs defined in the child admin.

	Fix Django 1.9 support in the admin.

	Fix missing history_view() redirection to the child admin, which is important for django-reversion [https://github.com/etianen/django-reversion] support.
See the documentation for hints for django-reversion-compare support.

Version 0.8.1 (2015-12-29)

	Fixed support for reverse relations for relname___field when the field starts with an _ character.
Otherwise, the query will be interpreted as subclass lookup (ClassName___field).

Version 0.8 (2015-12-28)

	Added Django 1.9 compatibility.

	Renamed polymorphic.manager => polymorphic.managers for consistentcy.

	BACKWARDS INCOMPATIBILITY: The import paths have changed to support Django 1.9.
Instead of from polymorphic import X,
you’ll have to import from the proper package. For example:

from polymorphic.models import PolymorphicModel
from polymorphic.managers import PolymorphicManager, PolymorphicQuerySet
from polymorphic.showfields import ShowFieldContent, ShowFieldType, ShowFieldTypeAndContent

	BACKWARDS INCOMPATIBILITY: Removed __version__.py in favor of a standard __version__ in polymorphic/__init__.py.

	BACKWARDS INCOMPATIBILITY: Removed automatic proxying of method calls to the queryset class.
Use the standard Django methods instead:

In model code:
objects = PolymorphicQuerySet.as_manager()

For manager code:
MyCustomManager = PolymorphicManager.from_queryset(MyCustomQuerySet)

Version 0.7.2 (2015-10-01)

	Added queryset.as_manager() support for Django 1.7/1.8

	Optimize model access for non-dumpdata usage; avoid __getattribute__() call each time to access the manager.

	Fixed 500 error when using invalid PK’s in the admin URL, return 404 instead.

	Fixed possible issues when using an custom AdminSite class for the parent object.

	Fixed Pickle exception when polymorphic model is cached.

Version 0.7.1 (2015-04-30)

	Fixed Django 1.8 support for related field widgets.

Version 0.7 (2015-04-08)

	Added Django 1.8 support

	Added support for custom primary key defined using mybase_ptr = models.OneToOneField(BaseClass, parent_link=True, related_name="...").

	Fixed Python 3 issue in the admin

	Fixed _default_manager to be consistent with Django, it’s now assigned directly instead of using add_to_class()

	Fixed 500 error for admin URLs without a ‘/’, e.g. admin/app/parentmodel/id.

	Fixed preserved filter for Django admin in delete views

	Removed test noise for diamond inheritance problem (which Django 1.7 detects)

Version 0.6.1 (2014-12-30)

	Remove Django 1.7 warnings

	Fix Django 1.4/1.5 queryset calls on related objects for unknown methods.
The RelatedManager code overrides get_query_set() while __getattr__() used the new-style get_queryset().

	Fix validate_model_fields(), caused errors when metaclass raises errors

Version 0.6 (2014-10-14)

	Added Django 1.7 support.

	Added permission check for all child types.

	BACKWARDS INCOMPATIBILITY: the get_child_type_choices() method receives 2 arguments now (request, action).
If you have overwritten this method in your code, make sure the method signature is updated accordingly.

Version 0.5.6 (2014-07-21)

	Added pk_regex to the PolymorphicParentModelAdmin to support non-integer primary keys.

	Fixed passing ?ct_id= to the add view for Django 1.6 (fixes compatibility with django-parler [https://github.com/edoburu/django-parler]).

Version 0.5.5 (2014-04-29)

	Fixed get_real_instance_class() for proxy models (broke in 0.5.4).

Version 0.5.4 (2014-04-09)

	Fix .non_polymorphic() to returns a clone of the queryset, instead of effecting the existing queryset.

	Fix missing alters_data = True annotations on the overwritten save() methods.

	Fix infinite recursion bug in the admin with Django 1.6+

	Added detection of bad ContentType table data.

Version 0.5.3 (2013-09-17)

	Fix TypeError when base_form was not defined.

	Fix passing /admin/app/model/id/XYZ urls to the correct admin backend.
There is no need to include a ?ct_id=.. field, as the ID already provides enough information.

Version 0.5.2 (2013-09-05)

	Fix Grappelli [http://grappelliproject.com/] breadcrumb support in the views.

	Fix unwanted ___ handling in the ORM when a field name starts with an underscore;
this detects you meant relatedfield__ _underscorefield instead of ClassName___field.

	Fix missing permission check in the “add type” view. This was caught however in the next step.

	Fix admin validation errors related to additional non-model form fields.

Version 0.5.1 (2013-07-05)

	Add Django 1.6 support.

	Fix Grappelli [http://grappelliproject.com/] theme support in the “Add type” view.

Version 0.5 (2013-04-20)

	Add Python 3.2 and 3.3 support

	Fix errors with ContentType objects that don’t refer to an existing model.

Version 0.4.2 (2013-04-10)

	Used proper __version__ marker.

Version 0.4.1 (2013-04-10)

	Add Django 1.5 and 1.6 support

	Add proxy model support

	Add default admin list_filter for polymorphic model type.

	Fix queryset support of related objects.

	Performed an overall cleanup of the project

	Deprecated the queryset_class argument of the PolymorphicManager constructor, use the class attribute instead.

	Dropped Django 1.1, 1.2 and 1.3 support

Version 0.4 (2013-03-25)

	Update example project for Django 1.4

	Added tox and Travis configuration

Version 0.3.1 (2013-02-28)

	SQL optimization, avoid query in pre_save_polymorphic()

Version 0.3 (2013-02-28)

Many changes to the codebase happened, but no new version was released to pypi for years.
0.3 contains fixes submitted by many contributors, huge thanks to everyone!

	Added a polymorphic admin interface.

	PEP8 and code cleanups by various authors

Version 0.2 (2011-04-27)

The 0.2 release serves as legacy release.
It supports Django 1.1 up till 1.4 and Python 2.4 up till 2.7.

For a detailed list of it’s changes, see the archived changelog.

 Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	django-polymorphic 0.9.2 documentation

Contributing

You can contribute to django-polymorphic to forking the code on GitHub:

https://github.com/chrisglass/django_polymorphic

Running tests

We require features to be backed by a unit test.
This way, we can test django-polymorphic against new Django versions.
To run the included test suite, execute:

./runtests.py

To test support for multiple Python and Django versions, run tox from the repository root:

pip install tox
tox

The Python versions need to be installed at your system.
On Linux, download the versions at http://www.python.org/download/releases/.
On MacOS X, use Homebrew [http://mxcl.github.io/homebrew/] to install other Python versions.

We currently support Python 2.6, 2.7, 3.2 and 3.3.

Example project

The repository contains a complete Django project that may be used for tests or experiments,
without any installation needed.

The management command pcmd.py in the app pexp can be used for quick tests
or experiments - modify this file (pexp/management/commands/pcmd.py) to your liking.

Supported Django versions

The current release should be usable with the supported releases of Django;
the current stable release and the previous release. Supporting older Django
versions is a nice-to-have feature, but not mandatory.

In case you need to use django-polymorphic with older Django versions,
consider installing a previous version.

 Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	django-polymorphic 0.9.2 documentation

Index

 Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

 changelog_archive.html

 Navigation

 		
 index

 		django-polymorphic 0.9.2 documentation »

Archive of old changelog entries

2011-01-24 V1.0 Release Candidate 1

		Fixed GitHub issue 15 (query result incomplete with inheritance).
Thanks to John Debs for reporting and the test case.

2011-12-20 Renaming, refactoring, new maintainer

Since the original author disappeared from the internet, we undertook to
maintain and upgrade this piece of software.

The latest “legacy” tag should be V1.0-RC-1. Anything above that should be
considered experimental and unstable until further notice (there be dragons).

New features, bug fixes and other improvements will be added to trunk from now on.

2010-11-11 V1.0 Beta 2

Beta 2 accumulated somewhat more changes than intended, and also
has been delayed by DBMS benchmark testing I wanted to do on model
inheritance. These benchmarks show that there are considerable
problems with concrete model inheritance and contemporary DBM systems.
The results will be forthcoming on the google discussion forum.

Please also see: http://www.jacobian.org/writing/concrete-inheritance/

The API should be stable now with Beta 2, so it’s just about potential
bugfixes from now on regarding V1.0.

Beta 2 is still intended for testing and development environments and not
for production. No complaints have been heard regarding Beta 1 however,
and Beta 1 is used on a few production sites by some enterprising users.

There will be a release candidate for V1.0 in the very near future.

New Features and changes

		API CHANGE: .extra() has been re-implemented. Now it’s polymorphic by
default and works (nearly) without restrictions (please see docs). This is a (very)
incompatible API change regarding previous versions of django_polymorphic.
Support for the polymorphic keyword parameter has been removed.
You can get back the non-polymorphic behaviour by using
ModelA.objects.non_polymorphic().extra(...).

		API CHANGE: ShowFieldContent and ShowFieldTypeAndContent now
use a slightly different output format. If this causes too much trouble for
your test cases, you can get the old behaviour back (mostly) by adding
polymorphic_showfield_old_format = True to your model definitions.
ShowField... now also produces more informative output for custom
primary keys.

		.non_polymorphic() queryset member function added. This is preferable to
using .base_objects..., as it just makes the resulting queryset non-polymorphic
and does not change anything else in the behaviour of the manager used (while
.base_objects is just a different manager).

		.get_real_instances(): implementation modified to allow the following
more simple and intuitive use:

>>> qs = ModelA.objects.all().non_polymorphic()
>>> qs.get_real_instances()

which is equivalent to:

>>> ModelA.objects.all()

		added member function:
normal_q_object = ModelA.translate_polymorphic_Q_object(enhanced_q_object)

		misc changes/improvements

Bugfixes

		Custom fields could cause problems when used as the primary key.
In inherited models, Django’s automatic ”.pk” field does not always work
correctly for such custom fields: “some_object.pk” and “some_object.id”
return different results (which they shouldn’t, as pk should always be just
an alias for the primary key field). It’s unclear yet if the problem lies in
Django or the affected custom fields. Regardless, the problem resulting
from this has been fixed with a small workaround.
“python manage.py test polymorphic” also tests and reports on this problem now.
Thanks to Mathieu Steele for reporting and the test case.

2010-10-18 V1.0 Beta 1

This release is mostly a cleanup and maintenance release that also
improves a number of minor things and fixes one (non-critical) bug.

Some pending API changes and corrections have been folded into this release
in order to make the upcoming V1.0 API as stable as possible.

This release is also about getting feedback from you in case you don’t
approve of any of these changes or would like to get additional
API fixes into V1.0.

The release contains a considerable amount of changes in some of the more
critical parts of the software. It’s intended for testing and development
environments and not for production environments. For these, it’s best to
wait a few weeks for the proper V1.0 release, to allow some time for any
potential problems to show up (if they exist).

If you encounter any such problems, please post them in the discussion group
or open an issue on GitHub or BitBucket (or send me an email).

There also have been a number of minor API changes.
Please see the README for more information.

New Features

		official Django 1.3 alpha compatibility

		PolymorphicModel.__getattribute__ hack removed.
This improves performance considerably as python’s __getattribute__
generally causes a pretty large processing overhead. It’s gone now.

		the polymorphic_dumpdata management command is not needed anymore
and has been disabled, as the regular Django dumpdata command now automatically
works correctly with polymorphic models (for all supported versions of Django).

		.get_real_instances() has been elevated to an official part of the API:

real_objects = ModelA.objects.get_real_instances(base_objects_list_or_queryset)

allows you to turn a queryset or list of base objects into a list of the real instances.
This is useful if e.g. you use ModelA.base_objects.extra(...) and then want to
transform the result to its polymorphic equivalent.

		translate_polymorphic_Q_object (see DOCS)

		improved testing

		Changelog added: CHANGES.rst/html

Bugfixes

		Removed requirement for primary key to be an IntegerField.
Thanks to Mathieu Steele and Malthe Borch.

API Changes

polymorphic_dumpdata

The management command polymorphic_dumpdata is not needed anymore
and has been disabled, as the regular Django dumpdata command now automatically
works correctly with polymorphic models (for all supported versions of Django).

Output of Queryset or Object Printing

In order to improve compatibility with vanilla Django, printing quersets
(__repr__ and __unicode__) does not use django_polymorphic’s pretty printing
by default anymore. To get the old behaviour when printing querysets,
you need to replace your model definition:

>>> class Project(PolymorphicModel):

by:

>>> class Project(PolymorphicModel, ShowFieldType):

The mixin classes for pretty output have been renamed:

ShowFieldTypes, ShowFields, ShowFieldsAndTypes

are now:

ShowFieldType, ShowFieldContent and ShowFieldTypeAndContent

(the old ones still exist for compatibility)

Running the Test suite with Django 1.3

Django 1.3 requires python manage.py test polymorphic instead of
just python manage.py test.

2010-2-22

IMPORTANT: API Changed (import path changed), and Installation Note

The django_polymorphic source code has been restructured
and as a result needs to be installed like a normal Django App
- either via copying the “polymorphic” directory into your
Django project or by running setup.py. Adding ‘polymorphic’
to INSTALLED_APPS in settings.py is still optional, however.

The file polymorphic.py cannot be used as a standalone
extension module anymore, as is has been split into a number
of smaller files.

Importing works slightly different now: All relevant symbols are
imported directly from ‘polymorphic’ instead from
‘polymorphic.models’:

new way
from polymorphic import PolymorphicModel, ...

old way, doesn't work anymore
from polymorphic.models import PolymorphicModel, ...

		minor API addition: ‘from polymorphic import VERSION, get_version’

New Features

Python 2.4 compatibility, contributed by Charles Leifer. Thanks!

Bugfixes

Fix: The exception ”...has no attribute ‘sub_and_superclass_dict’”
could be raised. (This occurred if a subclass defined __init__
and accessed class members before calling the superclass __init__).
Thanks to Mattias Brändström.

Fix: There could be name conflicts if
field_name == model_name.lower() or similar.
Now it is possible to give a field the same name as the class
(like with normal Django models).
(Found through the example provided by Mattias Brändström)

2010-2-4

New features (and documentation)

queryset order_by method added

queryset aggregate() and extra() methods implemented

queryset annotate() method implemented

queryset values(), values_list(), distinct() documented; defer(),
only() allowed (but not yet supported)

setup.py added. Thanks to Andrew Ingram.

More about these additions in the docs:
http://bserve.webhop.org/wiki/django_polymorphic/doc

Bugfixes

		fix remaining potential accessor name clashes (but this only works
with Django 1.2+, for 1.1 no changes). Thanks to Andrew Ingram.

		fix use of ‘id’ model field, replaced with ‘pk’.

		fix select_related bug for objects from derived classes (till now
sel.-r. was just ignored)

“Restrictions & Caveats” updated

		Django 1.1 only - the names of polymorphic models must be unique
in the whole project, even if they are in two different apps.
This results from a restriction in the Django 1.1 “related_name”
option (fixed in Django 1.2).

		Django 1.1 only - when ContentType is used in models, Django’s
seralisation or fixtures cannot be used. This issue seems to be
resolved for Django 1.2 (changeset 11863: Fixed #7052, Added
support for natural keys in serialization).

2010-1-30

Fixed ContentType related field accessor clash (an error emitted
by model validation) by adding related_name to the ContentType
ForeignKey. This happened if your polymorphc model used a ContentType
ForeignKey. Thanks to Andrew Ingram.

2010-1-29

Restructured django_polymorphic into a regular Django add-on
application. This is needed for the management commands, and
also seems to be a generally good idea for future enhancements
as well (and it makes sure the tests are always included).

The poly app - until now being used for test purposes only
- has been renamed to polymorphic. See DOCS.rst
(“installation/testing”) for more info.

2010-1-28

Added the polymorphic_dumpdata management command (github issue 4),
for creating fixtures, this should be used instead of
the normal Django dumpdata command.
Thanks to Charles Leifer.

Important: Using ContentType together with dumpdata generally
needs Django 1.2 (important as any polymorphic model uses
ContentType).

2010-1-26

IMPORTANT - database schema change (more info in change log).
I hope I got this change in early enough before anyone started
to use polymorphic.py in earnest. Sorry for any inconvenience.
This should be the final DB schema now.

Django’s ContentType is now used instead of app-label and model-name
This is a cleaner and more efficient solution
Thanks to Ilya Semenov for the suggestion.

 © Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		django-polymorphic 0.9.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Bert Constantin, Chris Glass, Diederik van der Boor.
 Created using Sphinx 1.3.5.

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

